

Proud to be part of planet earth.

25th National Award for Excellence in Energy Management Marelli Motherson Automotive lighting India Pvt. Ltd.,Pune

Presented By:-

Sahebrao Bhosale (Sr. Manager – Maint. & Energy) Ganesh Gore (Manager – Maintenance)

Company Overview

- 1. Company Profile
 - 2. Manufacturing Process

Energy consumption Details

- 3. Energy Consumption
- 4. Competitors & Benchmark
- 5. Energy Project Summary
- 5. Major Projects
- 1 2 3
- 6. Innovative Projects
 - 1 2 3

- 7. Renewable Energy Source
 Onsite/Offsite
 - 8. GHG Inventorisation
- 9. Waste utilization and Management
- 10. Green Supply Chain Management
- 11. EMS System

12. Net Zero Commitment

13. Awards

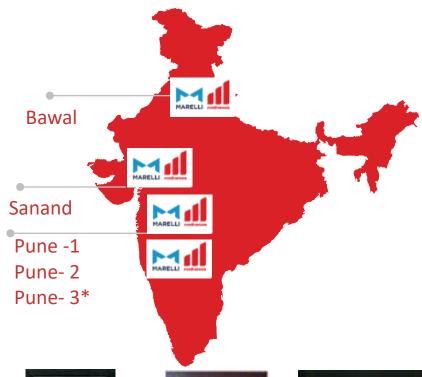
1. Marelli Motherson – Company Introduction

♣ 50 : 50 Joint Venture between Marelli & Samvardhana Motherson (India)

Motherson is one of the world's largest manufacturers of components for the automotive and transport industries with revenues of 11.3 Billion USD in 2019-20.

Driven by over 135,000 professionals from different cultures and nationalities. Supports customers from over 270 facilities across 41 countries and 5 continents. Global customer base of all the world's major automotive OEMs.

Full system solutions for automotive and other related industries.


7th largest automotive supplier worldwide

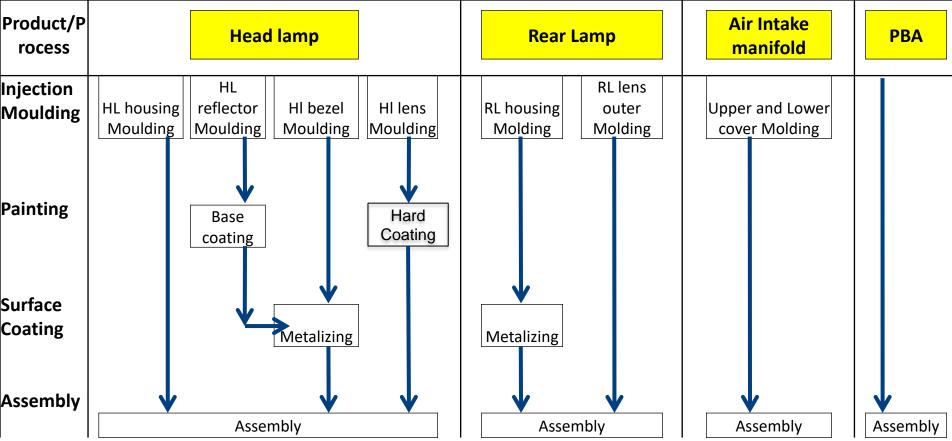
MARELLI is one of the leading Global independent suppliers to the automotive sector.

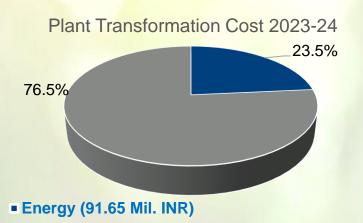
With a strong and established track record in innovation and manufacturing excellence.

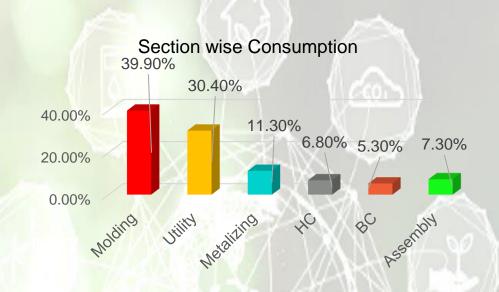
With around 60,000 employees worldwide, the MARELLI footprint includes 170 facilities and R&D centres across Asia, the Americas, Europe, and Africa, generating revenues of 13.4 Billion Euro in 2019.

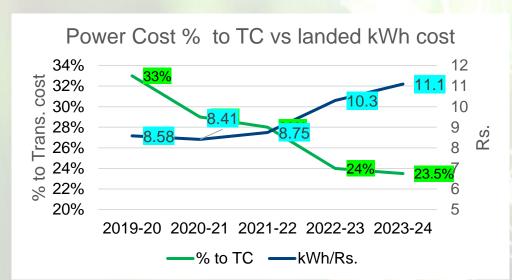
IATF 16949:2016 ISO14001

2. Manufacturing process

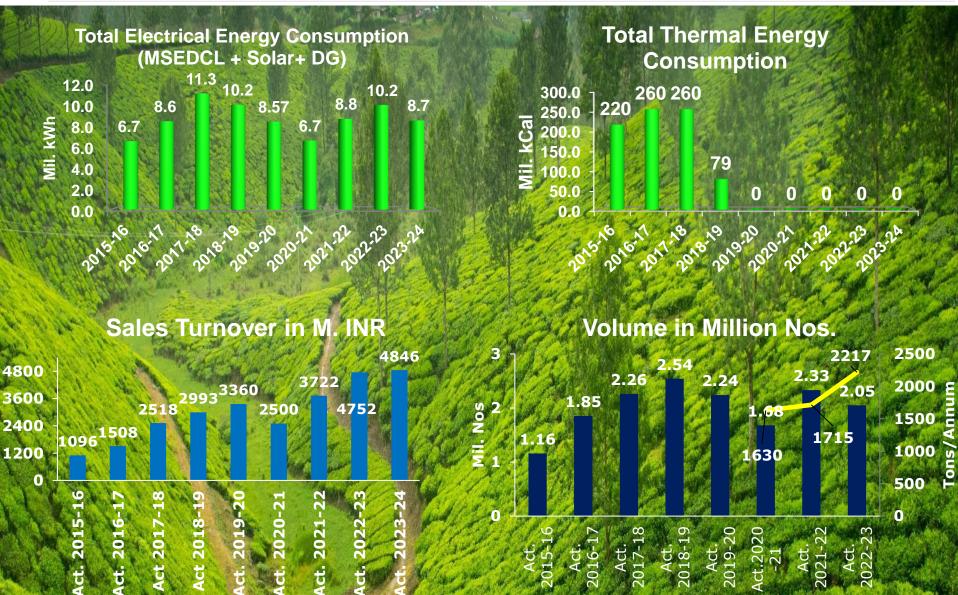






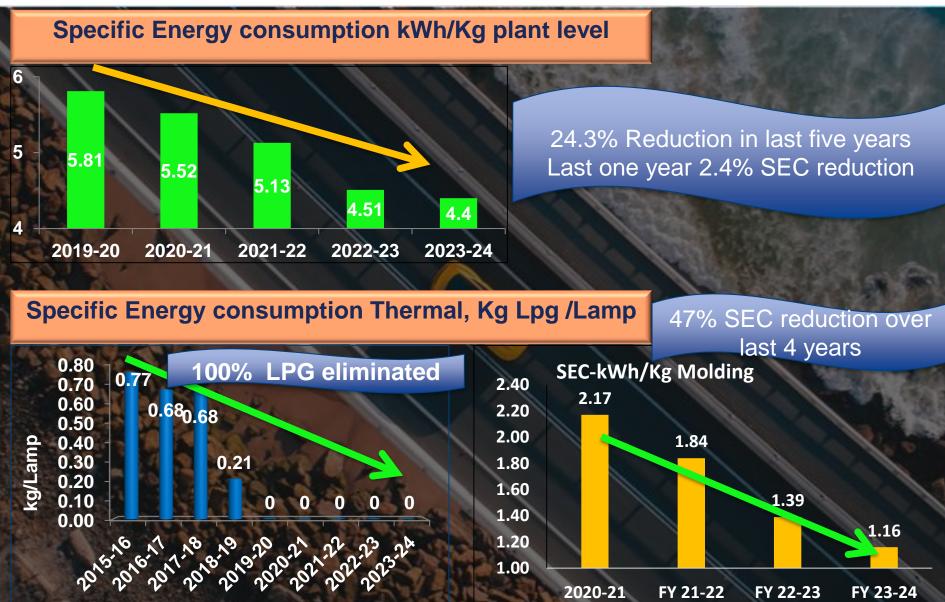


3. Energy Consumption Overview

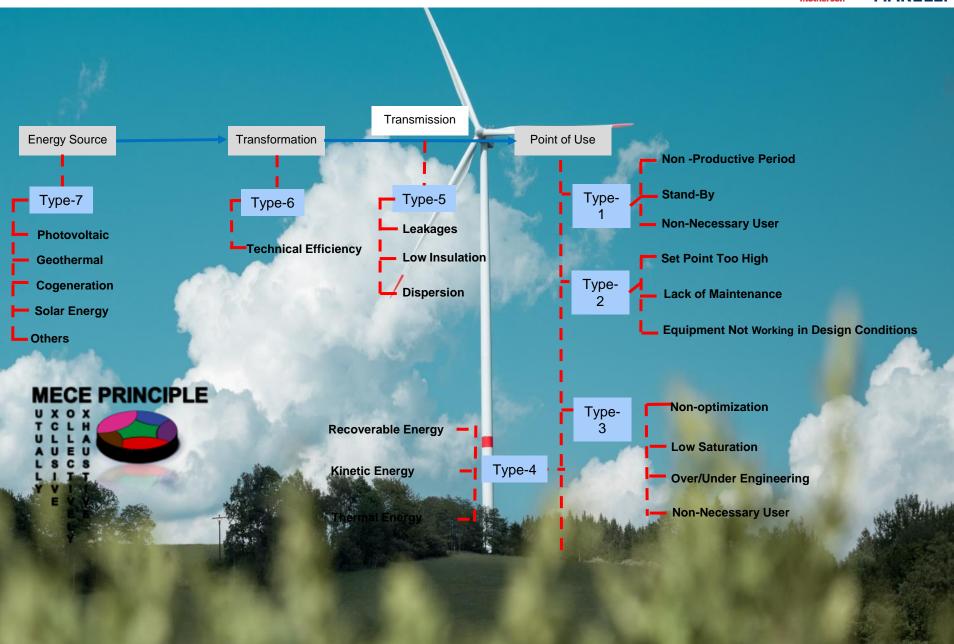

29% reduction over last 5 years

Power cost has been consistently dropping against the transformation cost. Despite hike in Power cost by 30% since 2019-20

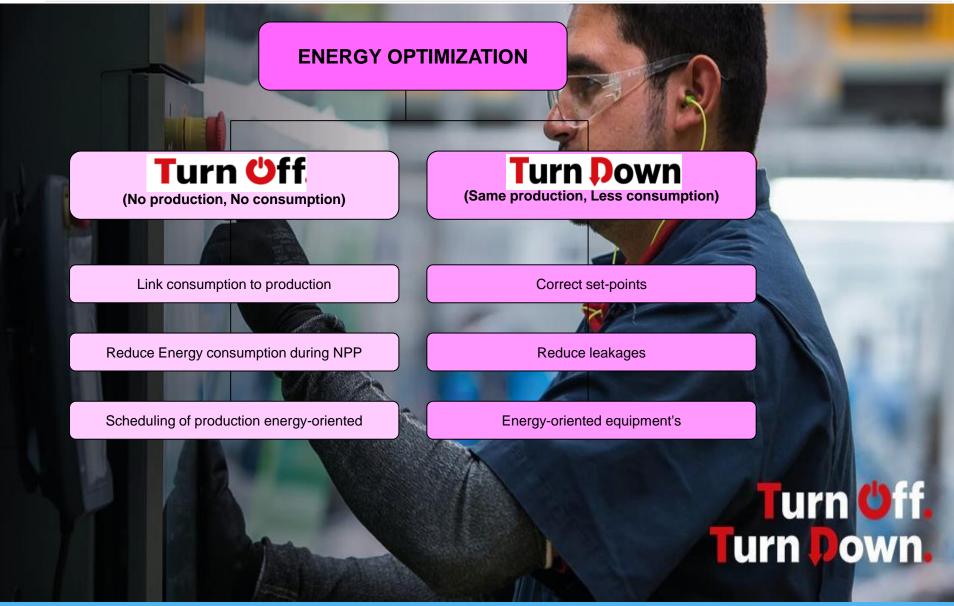
3. Specific Energy Consumption



3. Specific Energy Consumption

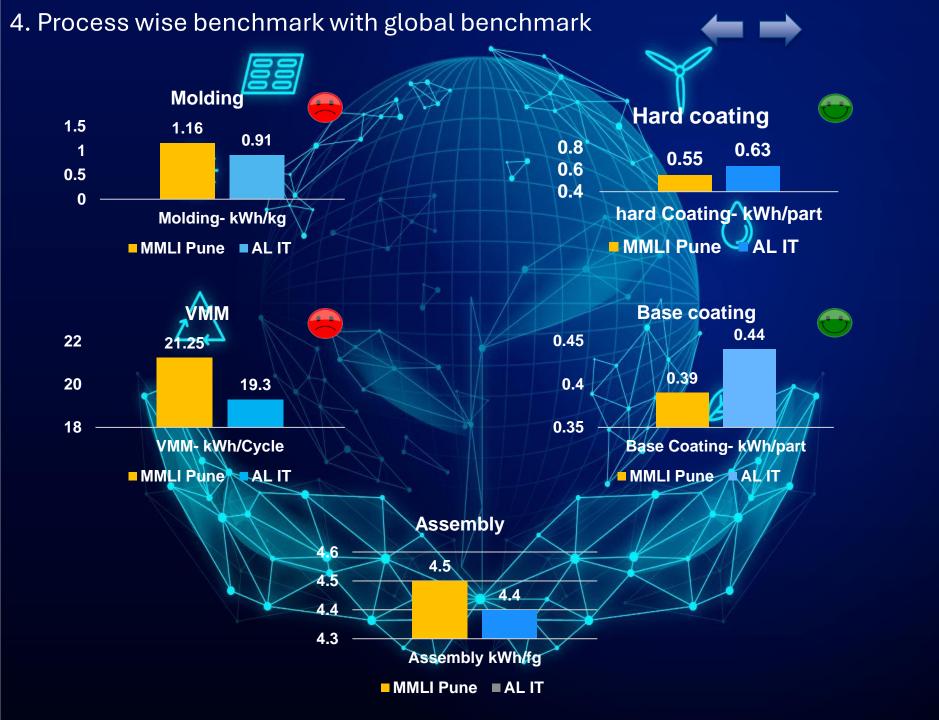


Energy-Types of Losses



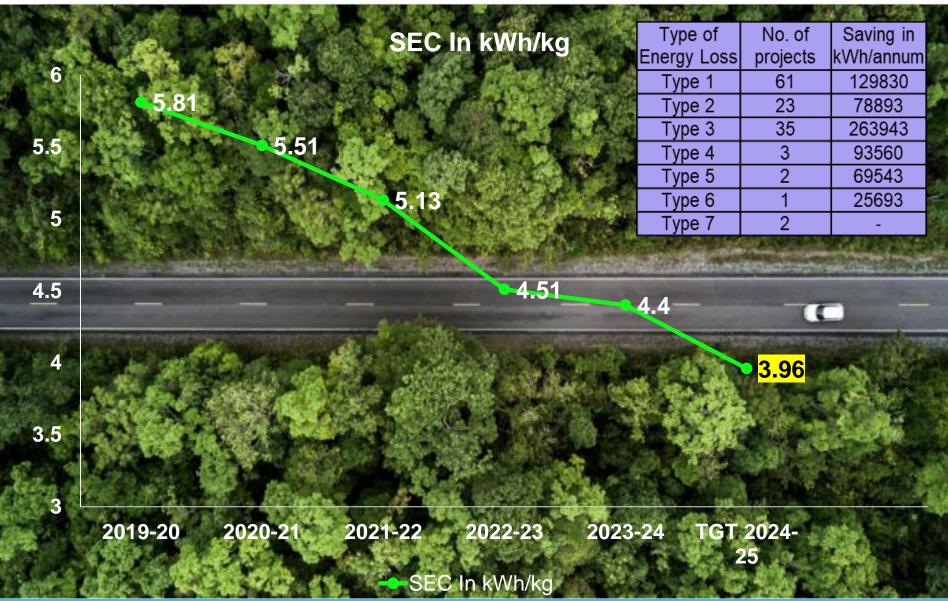
TO TD – Motherson Mantra





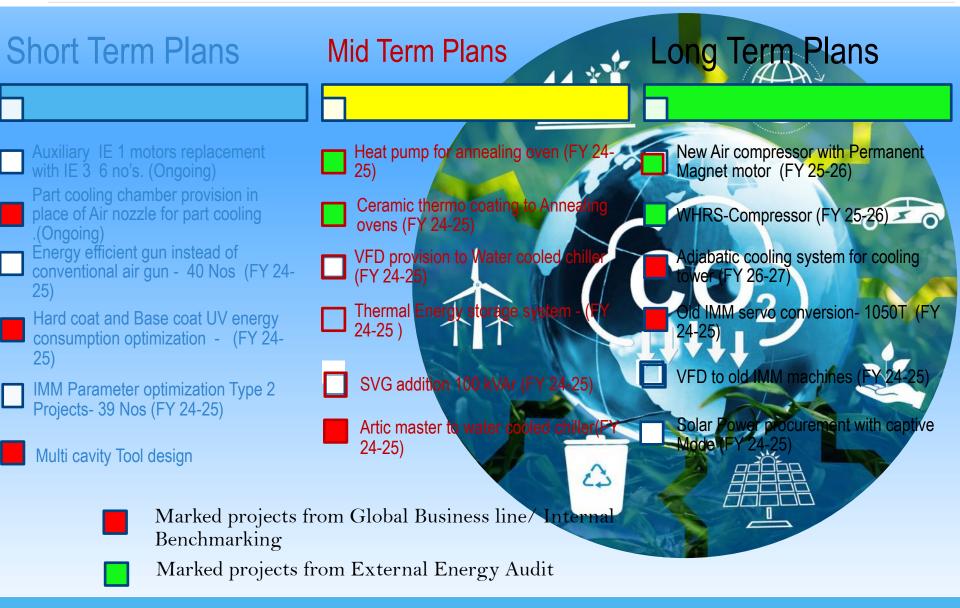
4. Competitors, National & Global Benchmark




4.Internal benchmarking - connected load

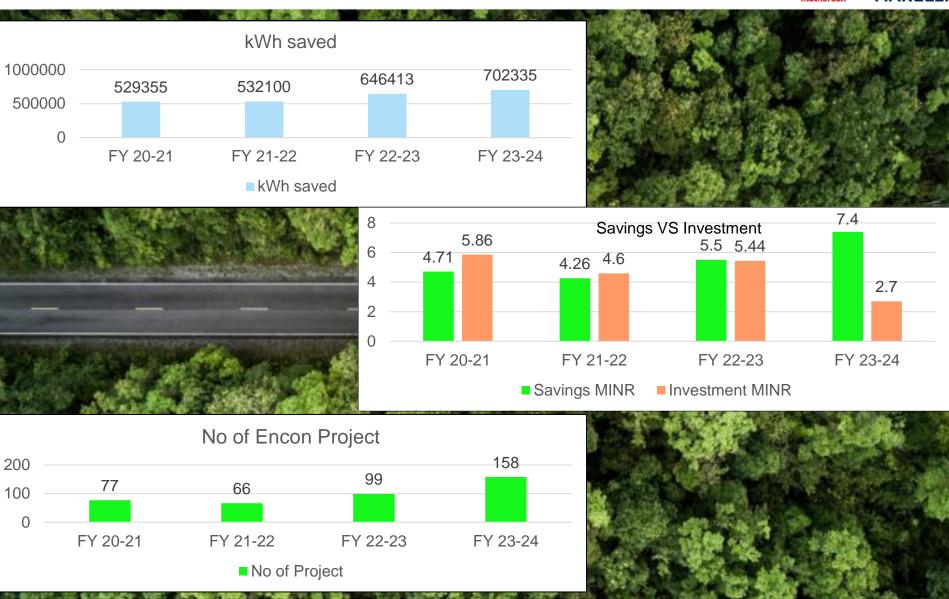
					11113	λ		. 11			
Machine		1100T	1300T	NB 550T-II	650T	A	910T	1000T	1050T	BMC-1	BMC-2
Consumers			f			7					
In KW	Motor 1	36	45	45	45		13.6	37	55	90	107
	Motor 2	175	45	1	45	7	13.6	37	55		
	Motor 3	7.5	45	_			13.6			7.5	7.5
	Motor 4			5			13.6				
Motor type	Motor 1	Servo	Induction/VFD	induction/ DFE	Induction/VFD	\geq	Servo	induction/ DFE	Induction/VFD	induction/ DFE	Servo
(induction/servo/VFD controlled)	Motor 2	Servo	Induction/VFD		Induction/VFD		Servo	induction/ DFE	Induction/VFD	induction	induction
	Motor 3	induction	Induction/VFD			1	Servo				
	Motor 4						Servo				
	REFILLING	hyd motor	hyd. Motor	hyd. Motor	hyd. Motor		hyd motor	induction + VI	hyd motor	hyd motor	hyd motor
Idle current (Amp)	Motor 1	4.12	41.66	26.12	40.29		0.45	25.9	48.7	36.5	2.15
	Motor 2		38.01	<	38.91		2.13	25.83	47.7		
	Motor 3		38.9				0.87		7	1	
	Motor 4					+	2.14		/	/,	
Nozzle heater (KW)	Heater 1	0.5	0.5	0.5	0.5	1	0.75	0.8	0.5	/	
Adapter	Heater 2	_	1.5	_	1		1.5	-			_
Barrel heater (KW)	Zone 1	12.2	16.39	2.8	11.48	7	12.4	6	11.48	<u>.</u>	
	Zone 2	12.2	14.07	2.8	11.04	2	12.6	6	11.04	J <mark>.</mark>	
	Zone 3	12.2	14.07	2.8	11.04		12.6	6	11.04		
	Zone 4	12.2	12.9	2.8	10.13	\nearrow	12.6	6	10.13	<u></u>	
	Zone 5	12.2						6			
	Zone 6	12.2				\angle					
Barrrel length (mm)		3415	3050	1700	2800		2150	2900	2900		
Barrel diameter (mm)		260	245	105	226	/	215	245	230		
Hourly consumption kWh		45	53	10.7	35		21	24	40	30	20

4. Road map to achieve Target / global benchmark



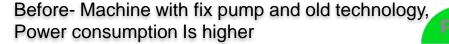
4. Short /Mid/Long term Projects Planned

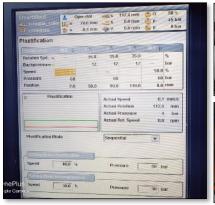
5. Energy saving projects Summary



Sr. No.	Type of Project	No of Projects	kWh Saving Annual	Cost Saved	Investment Made	ROI
1	To reduced energy consumption of hard coat/Base coat machine by waste heat recovery	2	39762	0.42	0.15	4.29
2	Energy efficient FRP fan provided to cooling tower instead of conventional GRP fan	7	23962	0.25	0.15	7.20
3	Oil cooling pump close loop with oil temp of injection molding machine	4	40716	0.43	0.01	0.28
4	Innovative thermo ceramic surface coating to appealing oven	1	7488	0.09	0.18	25.08
5	To reduced electricity cost by eliminated Lab chiller by modification of pipe line	1	16380	0.17	0.01	0.71
6	IE 2 to Energy efficient pump with IE 3 motor instead of conventional water pump to cooling tower	2	37814	0.40	0.21	6.30
7	IMM stand by barrel heating optimization	12	117:31	0.12	0.00	0.00
8	Hydro retro fitment of Toshiba injection molding machine	1	61776	0.71	1.15	19.44
9	To reduced energy consumption of compressor by increasing hydraulic hose pipe ID (comp 1)	2	12293	0.13	0.04	3.69
10	Thyristor in place of contactor to annealing oven	3	36648	0.38	0.21	6.63
11	VFD to injection molding machine hydraulic pump	3	7848	0.74	0.20	3.24
12	Parameter optimization of all IMM	14	48900	0.51	0.01	0.24
13	Dehumidifier heating temp optimization and ON/OFF timer ckt as per due point	21	105955	1.11	0.11	1.19


5. Energy saving projects Summary


5.Major Project -1: Electronics-Hydro retrofitment of Toshiba 1300T IMM



After- PLC, HMI, electronics changed added VFD ith Servo valve.

Benefits -

- 1)Average 67392 kWh/annum saved
- 2)Total 17.64% reduction in energy
- 3) Co2 Offset- 47.71 T/annum

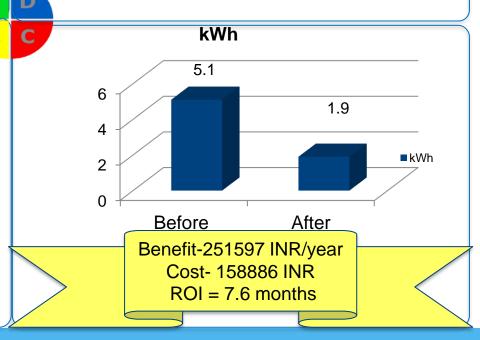
Co2 emission reduction/annum- 47.71
Tons

Innovation level- Challenge is to replace entire PLC and make New program with VFD and Servo valve logic.

Marel

5. Major Project 2: Energy efficient FRP EC fan in place of GRP fan to cooling tower .

Before- Earlier we used 3ph, 5.5 kW traditional GRP type fan for 290TR cooling tower. We were running cooling tower on 30 Hz frequency. Fan flow capacity was 37894 CFM Efficiency- 69%.



After- Now we installed 5.5 KW FRC type EC fan instead of GRP (Glass Reinforced polypropylene) type fan. Capacity 52635 CFM. Now WE are running Fan on 23 Hz On same flow. We saved 3.2 Unit/Hr. Efficiency- 92%.

Benefits -

- 1) Average 23961.6 kWh/year saving
- 2) Total 63% energy savings achieved

Co2 emission reduction/annum- 16.96 Tons

5. Major Project -3: Reduction Enegy Consumption in Dehumidifier by providing timer for Optimization of DH

Before - Piovan dehumidifier heating was continuously ON for 24 hrs. Required Dew point temp -5 deg cent. for all raw material. DH was running 24 hrs. so DH achieved - 21.3 deg cent. Which was more than requirement.

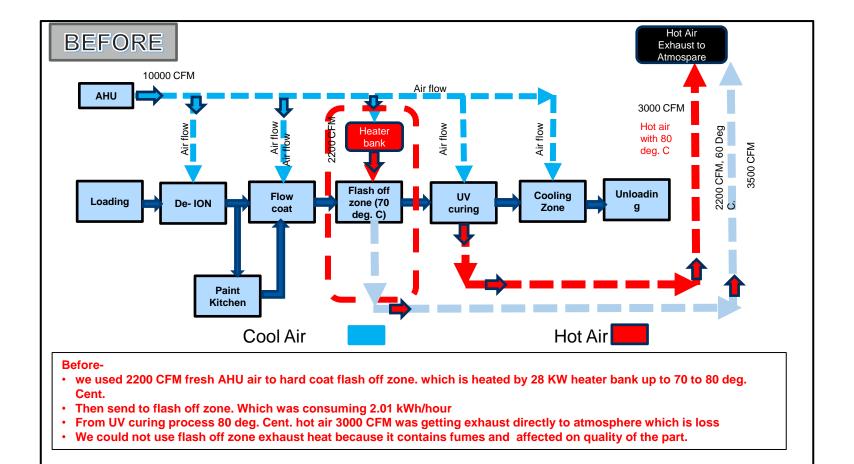
After- Provided timer to dehumidifier and We taken different trial then set time 10 off and 50 min ON in a hour.

Tested on all raw material. We saved 0.3 kWh

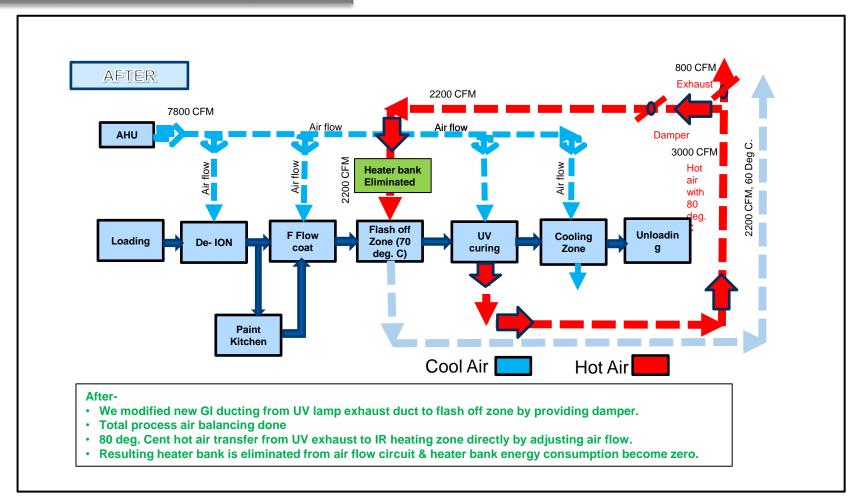
Sr. No.	Trials	ON time	OFF time	Set temp	Dew Point temp	Requirem ent	Status
1	Trial 1	60	0	120	-21.3	-5	ОК
2	Trial 2	55	5	110	-16	-5	ОК
3	Trial 3	50	10	110	-8.3	-5	ОК
4	Trial 4	45	15	120	-4.9	-5	Not OK
5	Trial 5	40	20	110	-1.2	-5	Not OK

Co2 emission reduction/annum- 30.21
Tons

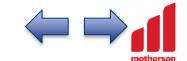
Benefit-23587 INR/year Cost- 3500 INR ROI = 1.78 months


6.Innovative Project 1: Waste Heat Recovery from Hard Coat line

Process flow Diagram Of Hard Coating



Innovative Project 1: Waste Heat Recovery from Hard Coat line

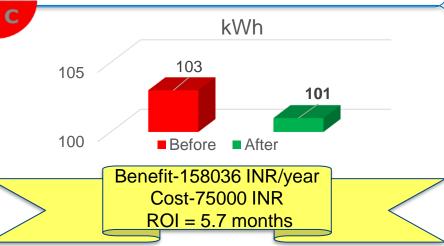


Process flow Diagram Of Hard Coating

6.Innovative Project 1: Waste Heat Recovery from Hard Coat line

Replication Potential-

MMLI Pune 2 - Hard coat


MMLI Plant 1 – Base coat

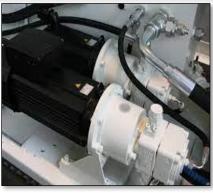
MMLI Plant 3- Hard coat

Benefits -

- 1) Energy saving of HD mc- 91368 kWh/year
- 2) Cost saving in INR 9.59 Lakh/Year
- 3) CO2 emission reduction 73.78 Tins/year

Co2 emission reduction/annum-12.19 Tons

Innovation level- first time in lighting Division group Co..


6. Innovative Project 2: Energy Saving through oil cooling pump close loop circuit

Before - Engel 1500T injection moulding machine oil cooling pump was continuously running 24 hrs. There is no auto off provision provided by OEM. And no any close system given with oil temperature.

After- provided external temperature controller with sensor and it close loop with oil temp. Now cooling pump operates on oil temperature. Pump gets ON only 20 min and 15 min remains off means pump gets ON only 14 hrs. and 10 hrs. remains off in a day.

Replication Potential -

- 1) Engel IMM 1500T-2
- 2) Engel IMM 1100T
- 3) Engel IMM 1500T -3

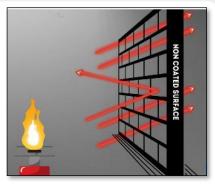
Benefits -

- 1)Average 16848 kWh/year saving
- 2)Total 10% energy saved
- 3) Energy saving of HD mc 40716 kWh/year saving
- 4)Cost saving of HD mc- 454662 INR/year

Co2 emission reduction/annum-28.82

Tons

2488 3000 2000 1000 Before After

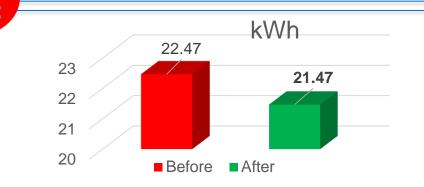

Benefit-156078 INR/year Cost- 3500 INR ROI = 0.27 months

6. Innovative Project - 3: Innovative thermo ceramic surface coating to annealing oven

A

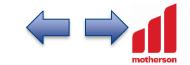
Before- Earlier annealing oven heater bank ON/OFF cycle is high due to the heat dissipated more from oven. Which was consuming 22.47 unit/hour. Heating reaching time also required more than 1 hour for 85 deg cent.

After- We provided thermo ceramic coating inside of annealing oven. Heating ON/OFF cycle improved. Starting Heating reaching time decreased. Heating reaching within 35 min up to 85 deg cent. We saved 1 unit/hr. Coating THK- 244 um.


Replication Potential -

- 1) TL 6 annealing oven
- 2) TL 3 annealing oven

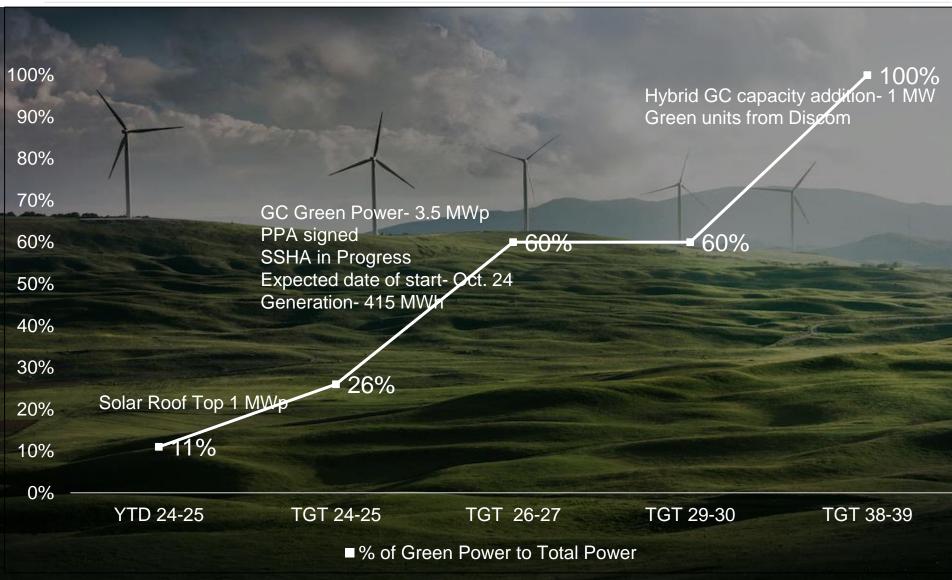
Benefits -


- 1) After installation of Pump 4.4% energy savings achieved.
- 2) Energy saving 7488 kWh/year
- 3) Annual Savings- 86112 INR/year.

Co2 emission reduction/annum- 5.30

Benefit-86112 INR/year Cost-180000 INR ROI = 25 months

Marelli Motherson Automotive lighting India Pvt. Ltd., Pune


UTILIZATION OF RENEWABLE

The second second										- 76		_
		Installed capacity Mil Kcal /annum (Thermal)	сара	st. Plant acity –Plan e(Electrica kWp			eration (Wh	% of electric energ	cal	insta	site Ilation Wp	
2015-16		260		0			0	0		0		
2016-17		260		608		365113		4.2			0	-
2017-18		260		891		756738		6.7		0		No.
2018-19		78.0		891		939584		9.2	9.2		0	
2019-20		0		891		10	88696	12.5			0	
2020-21		0		891		10	32877	15.13	3		0	
2021-22		0		979		96	55829	11.04	1		0	834
2022-23		0		979		99	9278	9.88			0	004
2023-24		0		979		95	1949	11.0			0	9 49
Target 2024-2	:5	0	979 2975326 30.5 3500		500	0						
renewable												_
Tonnes of CO2 Offset	0	310	643	799	S	925	878	684	7	707	67	74

7 a,b-Green Energy road map- offsite installation

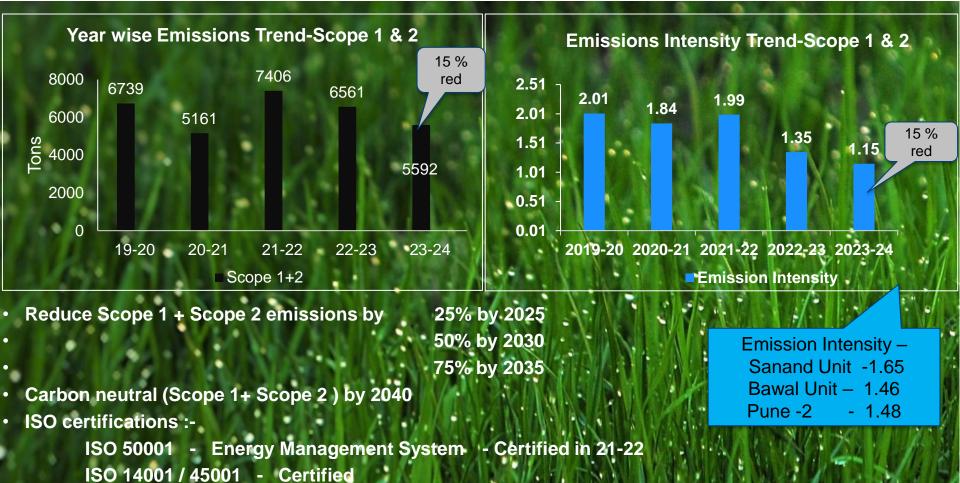
Sustainability at Motherson.

MOTHERSON JOINED THE UN GLOBAL COMPACT IN 2021

MSSL HAS BEEN INCLUDED IN THE 2021 DOW JONES SUSTAINABILITY EMERGING MARKETS INDEX, FOR THE FIRST TIME.

THE ONLY INDIAN AUTOMOTIVE COMPONENT COMPANY TO ACHIEVE QUALIFICATION TO THE DJSI EMERGING MARKETS 2021.

THIS HIGHLIGHTS THE COMMITMENT TO SUSTAINABLE BUSINESS PRACTICES AND FOCUS ON CONTINUALLY IMPROVING PERFORMANCE IN ALL ASPECTS OF THE ENVIRONMENTAL, SOCIAL AND GOVERNANCE (ESG) FRAMEWORK OF SUSTAINABILITY


Member of
Dow Jones
Sustainability Indices
Powered by the S&P Global CSA

8. GHG Inventorisation

- > 95 % by 2024

ISO 14040 - LCA - Life cycle assessment - by 2025-26

ISO 14067 - PCF - Product Carbon Footprint - by 2024-25

SAQ 5.0

Water Neutral :- 2025-26

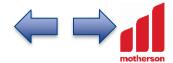
1. SOURCING

- Raw Materials
- O Conscious use of Natural Resources

Utilise Renewable Energy Waste

2. MANUFACTURE

- Efficient Manufacturing & Distribution

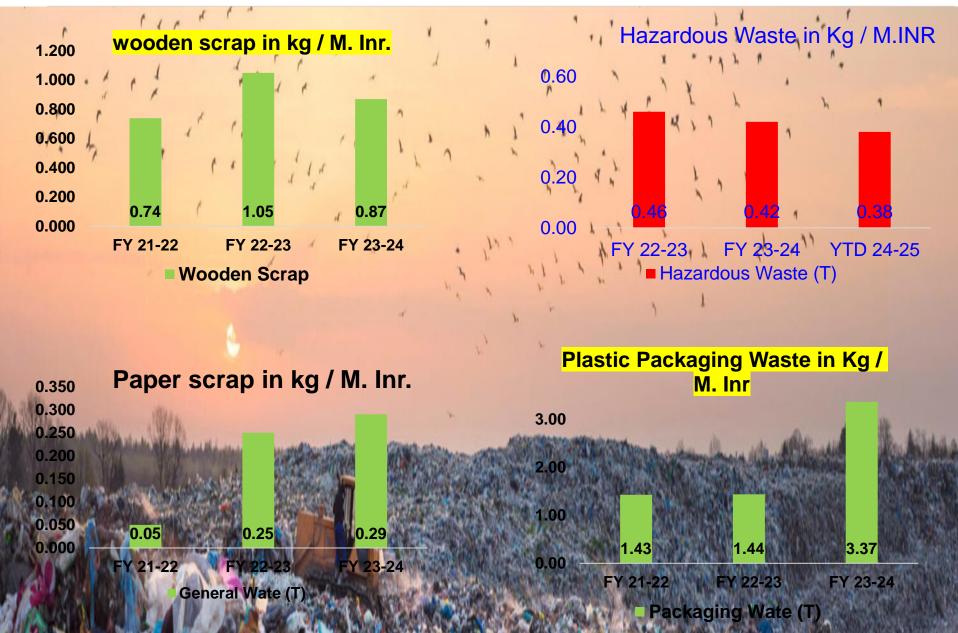

4. RECOVERY

- **⊕** Collection

3. USE

- Optimise Lifecycle
- O Use, Repair & Reuse

9. Waste Utilization & Management



Categories	Type of Waste	Waste generati on FY 20-21	Waste genera tion FY 21-22	Waste generati on FY 22-23	Waste generat ion FY 23-24	Recycl e %	In house Projects to reduce wastes/Disposal method
Engg. Plastic waste (in Tonnes)	 Engg Plastic runners 	197	140	186	116	99%	 Online gate grinders for runner reusage on 6 Machines Part weight reduction by runner size reduction 100% recycling through authorized supplier
Packaging plastic waste (in Tons)	 Wrap films Polybag Bubble bags 	8.6	5.31	7.0	16	100%	 Wrapping role size reduction, wrapping elimination and reusage for FG parts Polybag elimination and recirculation up to -75%
General Waste (In Tonnes)	 Carton Paper Cotton Metal wood 	35	31	46	67	100%	1)Instead of wooden pallets usage of reusable plastic pallets 2)Reduction in general waste, stationery etc.
Hazardous waste (In Tones)	1. Oil 2. Oil soaked cotton 3. ETP sludge 4. Aerosol e cont. 5. battery	3.6	3.1	2.23	2.02	99%	1)Disposal through Incinerator at MEPL authorized Vendor . 2)Process optimization

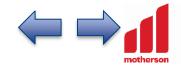
9. Waste Utilization & Management

9. Waste Recycling method

Waste	Type of waste	Authorise d agency	СТО	Waste treatment	Method of disposal	Assurance from agency	Status
Scrap engg. Plastic	Non hazardous	Naaz/Gaur i		Re-grinding & Granulation	Recycle-reuse by External agency	Certificate	
Packaging plastic	Non hazardous	Naaz	POF	Re-grinding & Granulation	Recycle-reuse by External agency	Certificate	
Papers	Non hazardous	Naaz	Gauri Poly CTO	Reprocess and recycle	Recycle-reuse by External agency	Certificate	
Wood	Non hazardous	Naaz		Recycling-using for furniture	Recycle-reuse by External agency	Certificate	
Carton	Non hazardous	Naaz	NAAZ CTO	Compress	Recycle-reuse by External agency	Certificate	
Cotton	Non hazardous	Naaz		washing & reuse	Recycle-reuse by External agency	Certificate	
Metal	Non hazardous	Naaz		Cutting & send to foundry for making metal bar	Recycle-reuse by External agency	Certificate	
E WASTE	Non hazardous	Sahara	POF	Dismantle-Hazardous – MEPL PCB/other waste – cutting Copper –External recycle	Recycle-reuse by External agency	Certificate after 45 days of disposition	
AFTER Organic (Food)			SAHARA CTO	Piggery Reuse	Reuse by External agency	No	
Used oil	Hazardous	Haneywell	Haneywell	Reprocess and recycle	Recycle-reuse by MMLI	NR	
			Industries				

9. Waste Recycling method

Waste	Type of waste	Authorised agency	CTO copy	Waste treatment	Method of disposal	Assurance from agency	Status
Air tins/Chemical Drums	Hazardous	MEPL		Incineration PGVR(Plasma Gasification)- Generation of Syngas	Incineration & Landfill (1:0.3)	Certificate	
Chemical sludge from waste water treatment (ETP)	Hazardous	MEPL	DOE	Solidification & Stabilization (Landfill)	Landfill (1:1.4)	Certificate	
Oil Soak cotton and gloves Glue waste/used static mixers	Hazardous	MEPL	MEPL CTO	Incineration PGVR(Plasma Gasification)- Generation of Syngas	Incineration & Landfill (1:0.003)	Certificate	
ВМС	Hazardous	MEPL		Solidification & Stabilization (Landfill)	Landfill (1:1.4)	Certificate	


Responsible value chain

Responsible sourcing of materials; product subcomponents, packaging (ensuring recyclability wherever possible); inbound, inter-company and outbound logistics

- Implement Product Carbon Footprint (PCF) processes and awareness throughout thevalue chain.
- Improve energy efficiency use and promote use of renewable energy throughout the supply chain.
- · Actively support the implementation of carbon offset initiatives in the value chain.
- Target to avoid the use of conflict minerals and removal of any SOCs from our product lines and processes throughout the value chain

Source :- Motherson sustainability report

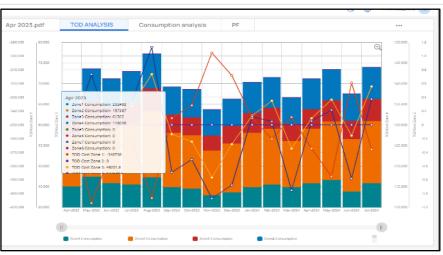
10. Green Supply Chain management

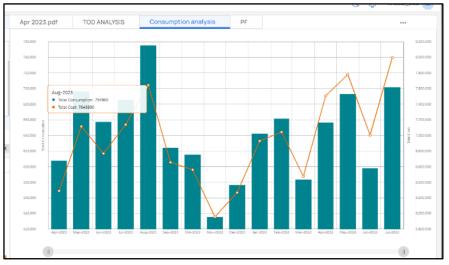
			Actual Achievement						
S. No.		2023-24	2023-24	Target 2024-25	2025-26	2026-27	2027-28	2028-29	2029-30
1	Adhere to Motherson Supplier Code of Conduct	100%	78%	85%					
2	Supplier coverage with SAQ 4.0/5.0	60%	48%	100%					
3	SAQ 4.0 Score - Direct material suppliers	60%	48%	70%	80%	90%			
4	ISO certifications - Direct material suppliers								└──
	ISO 14001	75%	65%	100%	ļ				└
	ISO 45001	40%	34%	50%	75%	100%	1000/		└──
	ISO 50001		4%	25%	50%	75%	100%		 '
	Product carbon footprint - ISO 14067			20% suppliers contributing 80% of purchase value	25%	50%	75%	100%	
	Life cycle assessment - ISO 14040					25%	50%	75%	100%
	Scope 3 Emission calculation			10 suppliers					
5	Establish Scope 1 and 2 emissions data - Direct material suppliers	25%	20%	50%	100%				
6	Green energy - Direct material suppliers nos.	20%	20%	40%	60%	80%	100%		
7	Green energy content of suppliers using the green energy	20%	20%		>40%		>50%	=100%	
8	Water neutral - Direct material suppliers				50%	75%	100%		
9	Non hazardous waste recycling %	50%	60%	75%	80%	100%			
10	Carbon neutrality (Scope 1+2) - Direct material suppliers								100%
11	Zero discharge			10%		50%			100%
12	Bio diversity								50%
13	Rain Water Harvesting			10%	20%	50%	60%	75%	100%
14	Eco vadis rating (Silver rating)		17%	41%	41%	50%			100%
15	Plastic packaging elimination							100%	

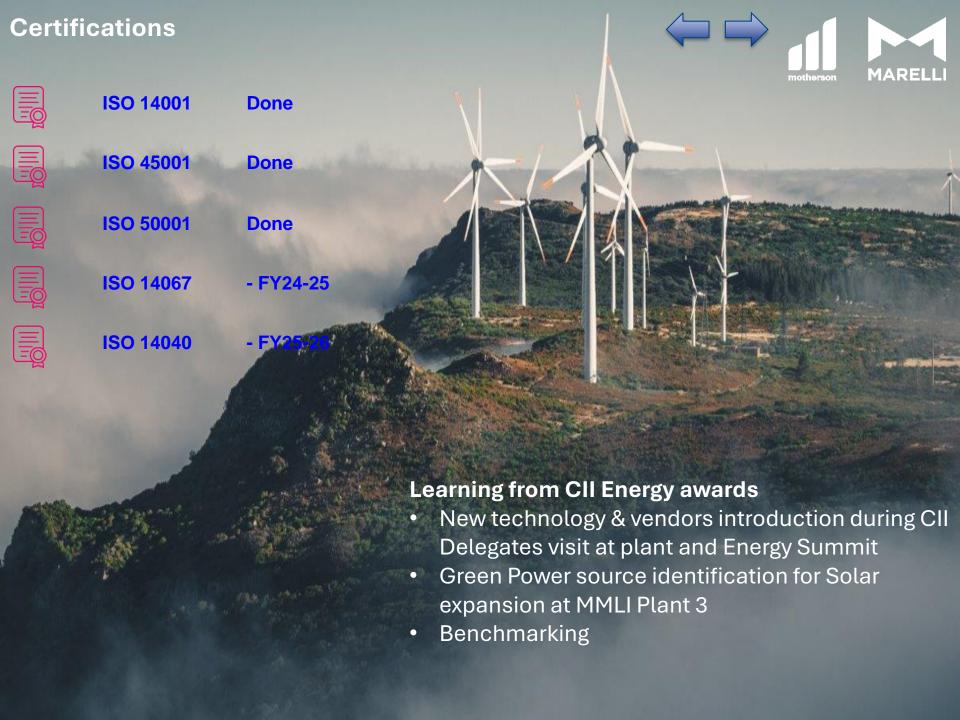
Total No . Of Supplier accessed	Year	Encon Projects Nos.	Evaluatio n Done	kWh Saved ('000)	Green Energy Projects	Encon ROI (Avg.)
32	2020-21	72	43	3.39	0	< 1 year
48	2021-22	147	110	7.18	1	<2 year
						y 5 5
93	2022-23	207	170	107.7	3	< 2 years
84	2023-24	284	201	119	5	<2 years

- Supplier Sustainability training
- Sustainability summit with suppliers at MMLI plant
- Energy Checkpoint added in monthly assessment check sheet
- Evaluation done during monthly audit
- ROI sheets verified during meeting with concern section heads in supplier company
- In discussion with 27 Suppliers for rooftop solar installation.

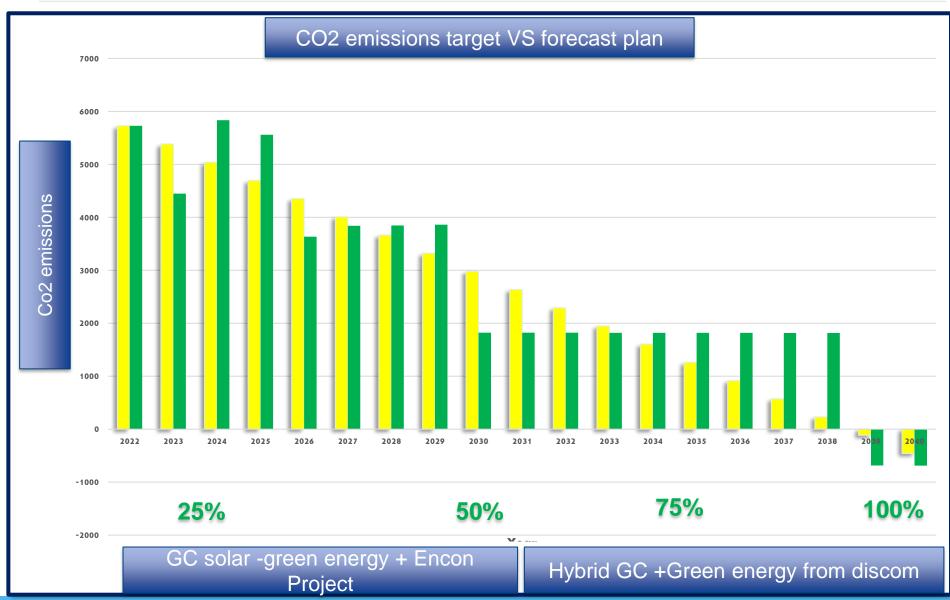
11. EMS System and other requirements




FeederName	7:00-08:0	8:00-09:0	9:00-10:0	0:00-11:0	1:00-12:0	2:00-13:0	3:00-14:0	4:00-15:0	5:00-16:0	6:00-17:0	7:00-18:0
Engle M/C-2	6.57	0.04	10.25	14.66	18.42	32.92	21.49	18.00	16.04	15.21	25.50
VRF metalizing	8.00	8.40	9.10	8.40	9.70	10.30	11.90	12.60	10.90	12.60	11.80
Engle M/C-1	32.48	34.06	40.29	40.77	38.56	33.05	39.62	40.38	41.76	38.68	39.37
Store Area	12.70	11.70	12.00	12.00	13.10	11.30	12.40	13.20	14.60	15.20	15.20
430 T Machine	13.50	13.70	13.70	13.60	13.90	13.20	13.80	13.30	13.50	13.90	13.30
650 Ton TOSHIBA M/C	27.00	27.00	25.00	27.00	26.00	27.00	24.00	14.00	28.00	28.00	27.00
550 Ton M/C-1	11.92	5.05	0.11	0.12	20.11	6.87	0.49	4.77	26.26	23.07	21.85
910 Ton M/C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1300 Ton M/C	35.00	34.00	35.00	35.00	35.00	35.00	35.00	34.00	32.00	36.00	35.00
850 Ton M/C	15.12	15.11	15.08	15.14	15.08	15.08	15.00	15.15	9.16	4.99	8.43


Enegy Monitoring System:-

✓ Daily and Hourly consumption report


- ✓ Actual useless consumption report on daily basis with live SMS/e mail alert
- ✓ BOT for bills analysis

12. Net Zero Roadmap

12. Sustainability Roadmap

SCOPE 1&2 13%
WATER NEUTRAL 10%
% GREEN POWER 10%
ISO 14001 CERTIFIED
ISO 45001 CERTIFIED

% GREEN POWER-

50%

WATER NEUTRAL ISO 14040 CERTIFIED

PLASTIC WASTE ZERO
LANDFILL WASTE ZERO

SCOPE 1&2
GREEN POWER

NET ZERO 100%

2040

2021BASE YEAR)

2030

2025

SCOPE 1&2

% GREEN POWER

WATER NEUTRAL

ISO 50001

ISO 14067

Non hazardous waste

25%

25%

50%

CERTIFIED

CERTIFIED

100% RECYCLING

2035

SCOPE 1&2

% GREEN POWER

70% 70%

(CO₂)

Proud to be part of planet earth.

12. Target (short/long term) for GHG emission reduction

Key Partners: Who will help to deliver?

- Identify the key external partners / suppliers
 Identify the key internal Motherson divisions and OP-COs that will assist in this Net Zero transition plan delivery.
- 1. Solar plant
 installers and
 providers onsite
 and offsite with
 CAPEX and OPEX
 models
- 2. WTG providers offsite
- 3. State Grid suppliers
- 4. DG green fuel conversion retro fitting suppliers
- 5. Green/low carbon fuel suppliers.
- 6. Professional energy auditors

Key activities: How do we propose to do it? 1. Install roof top solar in

- CAPEX/OPEX model.
- PPA for renewable power in CAPEX/OPEX mode
- Agreement with GRID suppliers for green energy at premium price.
- 4. DG conversion to green fuel
- 5. Energy conservation projects to reduce energy consumption
- 6. Replace AC refrigerants with low GWP refrigerants.

Key resources: What is needed to succeed?

- Legal team
- 2. Purchase team
- 3. Finance team
- 4. Facility management
- Specialist with good understanding of state policies on green power procurement
- 6. Energy managers and auditors
- 7. Energy measurement devices and Online EMS

Value proposition: What do we need to do?

- Which Scopes does the proposal apply
- What is your Co2e baseline?
- What needs / pain points does the ideation satisfy?
 Does the idea / product / service offer any key USP's
 - Give details below :
- Replace Fossil fuel energy by green energy.
- Reduce Scope 1 and Scope 2 emissions of the plant
- 3. 2020-21 Baseline of 5721 T of CO2 eq.

Target timing: What are the key milestones

1. Get quotes on Open Access PPA for renewable energy in CAPEX/OPEX model and validate ROI. – 2024-25

- Initiate and finalize green power purchase agreement with state Grid supplier – 2038-39
- Get the feasibility of running the DG on green fuel or in hybrid mode.
- Get quote for DG conversion to hybrid mode and validate ROI.
- 5. Carry out energy audits, identify and quantify the losses, work out the ROI of proposed solutions alternate year

Benchmarking: Who are our competitors • Are established players active in the field?

- What are their key product and performance attributes?
- What are the competitors price points ?

Give details below:

- cAPEX and OPEX solar installations M+, Clean max, Sunsource are capable players- Most of them use standard installations.
- 2. No installer use dual sided panels yet.
- 3. For WTG used asset is preferred over new asset.

Budget activities: How much do Motherson need to invest?

- 1. Group Captive Solar power purchase 16 Minr to be covered in CPAEX 2024-25
- Encon activities budget to be covered in CAPEX and OPEX in 2024-25 Apprx 6 Minr
- 3. Solar Panel replacement in 2031
- 4. Green Power purchase from state GRID, 3.4MWh, at cost of 2.4 Minr Plan in OPEX of 2035 onwards

Revenue stream: How much return can Motherson expect?

- 1. SOLAR capex model apprx 20 months
- 2. ENCON projects ROI within max 18-36 months

State & National level Awards

2018 to 2022 5 Awards

2019 to 2023 8 Awards

2021 to 2023 3 Awards

2023 1 Awards

2024 2 Award:

International Awards

Presenter's Contact details
Sahebrao Bhosale- <u>sahebraobhosale@marelli.motherson.com</u>
Ganesh Gore — <u>ganesh.gore@marelli.motherson.com</u>